MAPPING CYLINDER NEIGHBORHOODS OF ONE-COMPLEXES IN FOUR-SPACE

BY
J. L. BRYANT(1) AND R. C. LACHER(2)

Abstract. We prove the following theorem: If K is a 1-complex topologically embedded in S^4 , and if K has mapping cylinder neighborhoods in S^4 at almost all of its points, then K is tame. The proof uses engulfing and the theory of proper, one-acyclic mappings of 3-manifolds onto the real line.

Suppose M^m is a (topological) manifold (without boundary) in the manifold N^n , $x \in M^m$. We say that M^m has a mapping cylinder neighborhood in N^n at x if there exist

- (i) an open neighborhood V of x in M^m ;
- (ii) an open (n-1)-manifold U;
- (iii) a proper mapping ϕ of U onto V; and
- (iv) a homeomorphism ψ of Z_{ϕ} onto a neighborhood of V in N such that $\psi(v) = v$ for each $v \in V$.

The requirement that the image of ψ be a neighborhood of V forces U to have two components when m=n-1 (and V is small).

In the above definition, Z_{ϕ} denotes the mapping cylinder of ϕ , with U and V identified as subsets of Z_{ϕ} as is customary. A proper map is one under which inverse images of compact sets are compact. We use \mathbb{R}^n to denote euclidean n-space, \mathbb{R}^n is the closed unit ball centered at 0 in \mathbb{R}^n , and $\mathbb{S}^n = \operatorname{Bd} \mathbb{R}^{n+1}$. The symbol " \approx " means "is homeomorphic to".

It has been conjectured that an m-manifold M^m is locally flat in an n-manifold N^n if and only if M^m has mapping cylinder neighborhoods in N^n at each point. When $n \le 3$, this conjecture has been proved by Nicholson in [17]. The case n=4, m=3 is proved in [14]. The main purpose of the present paper is to prove the conjecture in case n=4, m=1 (see Corollary 4.2 below). The cases n-m=2, $n \ge 4$ are false (because there are nonlocally flat piecewise linear embeddings). When $n \ge 5$, the cases $n-m\ne 2$ remain open.

The truth of the above mapping cylinder conjecture in case n=k+l, m=l-1 implies the truth of the following well-known conjecture: If the l-fold suspension

Received by the editors December 21, 1970.

AMS 1970 subject classifications. Primary 55A99, 57A30, 57A35, 57A40, 57A50.

Key words and phrases. Topological embeddings of one-complexes, locally flat embeddings, locally tame embeddings, mapping cylinder neighborhoods, UV properties, engulfing.

⁽¹⁾ Partially supported by grant NSF GP-19964.

⁽²⁾ Alfred P. Sloan Research Fellow, partially supported by grant NSF GP-19964.

of a homology k-sphere H^k is a manifold, then H^k is simply connected. Thus, for $n \ge 5$, the cases n-m=1 might seem the more tractable of the mapping cylinder conjectures. See [7] for the latest on the homology sphere conjecture.

1. Acyclicity of certain maps.

DEFINITION. Let Z be a space, Y a closed subspace, G an abelian group. We say that Z is lc^k (G) mod Y if, for any point $y \in Y$ and any neighborhood U of y in Z, there exists a neighborhood V of y in U such that the inclusion-induced map $\tilde{H}_i(V-Y;G) \to \tilde{H}_i(U-Y;G)$ is zero (on reduced singular homology) for $0 \le i \le k$. The following result is well known. (Z is the group of integers.)

THEOREM 1.1. Suppose that M^m is an m-manifold topologically embedded in the interior of the n-manifold N^n . Then N^n is $lc^{n-m-2}(\mathbf{Z}) \mod M^m$.

Proof. Let $x \in M$, and let U be an open n-cell neighborhood of x in N. Consider the reduced homology sequence of the pair (U, U - M):

$$\cdots \rightarrow H_{i+1}(U, U-M) \rightarrow \tilde{H}_i(U-M) \rightarrow \tilde{H}_i(U) \rightarrow \cdots$$

We have $\tilde{H}_i(U) = 0$ for all i and $H_{i+1}(U, U-M) \simeq H_c^{n-i-1}(U \cap M) = 0$ for n-i-1 > m. Therefore $\tilde{H}_i(U-M) = 0$ for $i \le n-m-2$.

DEFINITION. A compact set X in the ANR M is said to have property $uv^k(G)$ (or be strongly k-acyclic over G) if for any neighborhood U of X in M there exists a neighborhood V of X in U such that $\tilde{H}_i(V;G) \to \tilde{H}_i(U;G)$ is zero for $0 \le i \le k$.

COROLLARY 1.2. Suppose that $f: U^{n-1} \to V^m$ is a proper, surjective map between manifolds. If Z_f embeds (locally) in euclidean n-space then $f^{-1}(y)$ has property $uv^{n-m-2}(\mathbf{Z})$ for each $y \in V^m$.

Proof. It follows immediately from (1.1) that Z_f is $lc^{n-m-2}(\mathbf{Z}) \mod V$. The result follows from Theorem 2.2 of [13].

2. One-acyclic maps of 3-manifolds onto R. Let Z_* be either the integers or the integers modulo two, R the real line.

THEOREM 2.1. Let W^3 be an open 3-manifold, and suppose that $f\colon W^3\to R$ is a proper, surjective map. Suppose further that $f^{-1}(t)$ has property $uv^1(Z_*)$ for each $t\in R$. Then there exists a locally finite subset F of R such that if J is an open interval of R which contains no point of F then $f^{-1}(J)\approx S^2\times R$.

Before proving (2.1) we need a definition and a preliminary result.

DEFINITION. A compact set X in the ANR M is said to have property 1-UV if each neighborhood U of X in M contains a neighborhood V of X such that every loop in V is null-homotopic in U.

THEOREM 2.2. Let f be a proper, monotone map of the open 3-manifold W^3 onto R. Suppose that, for each $t \in R$, $f^{-1}(t)$ has a neighborhood which contains no fake cubes and $f^{-1}(t)$ has property 1-UV. Then $W^3 \approx S^2 \times R$.

Proof. Since $f|f^{-1}(U)$ induces an isomorphism $\pi_1(f^{-1}(U)) \to \pi_1(U)$ for any connected open set $U \subseteq \mathbf{R}$ (see [1] or [12]) we have that $f^{-1}(J)$ is simply connected for any open interval $J \subseteq \mathbf{R}$, and, moreover, $f^{-1}(J)$ has two simply connected ends.

Choose J such that $f^{-1}(J)$ contains no fake cubes. Applying [9], we see that either end of $f^{-1}(J)$ has a collar neighborhood; thus, there exists an embedding

$$h: S^2 \times ((-\infty, -1) \cup (1, +\infty)) \to f^{-1}(J)$$

such that the complement of the image of h is compact. Let $W_- = h(S^2 \times (-\infty, -2])$, $W_+ = h(S^2 \times [2, +\infty))$, and $W_0 = f^{-1}(J) - W_-^\circ - W_+^\circ$. W_0 is a compact simply connected 3-manifold whose boundary is the union of two 2-spheres. Moreover, W_0 contains no fake cubes. Such a 3-manifold must be homeomorphic to $S^2 \times I$; for, by boring a hole from one boundary component to the other, we can write W_0 as the union of a 3-cell and a homotopy 3-cell meeting along an annulus common to their boundaries. Thus, $f^{-1}(J) \approx S^2 \times R$.

Now, let $\cdots t_{i-1} < t_i < t_{i+1} < \cdots$ be a locally finite set in R such that $f^{-1}(t_i, t_{i+2}) \approx S^2 \times R$ for each i. We can engulf any compact set in W with $f^{-1}(t_{-1}, t_{+1})$ using the structure of $f^{-1}(t_i, t_{i+2})$ to pull $f^{-1}(t_{-1}, t_{+1})$ along. Thus, W contains no fake cubes, and the result follows from the argument in the preceding paragraph.

Proof of (2.1). Let $f: W^3 \to \mathbb{R}$ be given as in the hypothesis of (2.1). Define

 $F' = \{t \in \mathbf{R} \mid f^{-1}(t) \text{ does not have property 1-UV}\},$ $F'' = \{t \in \mathbf{R} \mid \text{ every neighborhood of } f^{-1}(t) \text{ contains a fake cube}\},$ $F = F' \cup F''.$

By (2.2), we need only show that F is locally finite. A theorem of Kneser [11] shows that F'' is locally finite. The local finiteness of F' follows from work of McMillan [15] (see also [16]) and Wright [18]. Let $F_0' = \{t \in \mathbb{R} \mid f^{-1}(t) \text{ does not have arbitrarily small neighborhoods with free fundamental group}. It follows from Theorem 2 of [15] that <math>F_0'$ is locally finite (for otherwise a compact submanifold of W has nonfinitely generated fundamental group by Grushko's theorem). But the arguments [18, Theorem 1] show that $F_0' \supset F'$. (If $t \notin F_0'$, then $f^{-1}(t)$ has small neighborhoods $V \subset U$, where $H_1(V; \mathbb{Z}_2) = 0$ and $\pi_1(U)$ is free. Let $S_0G = G$, $S_{n+1}G = \text{subgroup of } S_nG$ generated by all squares of elements of S_nG , and $S_\omega G = \bigcap_{n=1}^\infty S_nG$. It follows that $S_\omega \pi_1(V) = \pi_1(V)$ while $S_\omega \pi_1(U) = \{1\}$, so that every homomorphism $\pi_1(V) \to \pi_1(U)$ is trivial.)

REMARK. Examples show that F in (2.1) may well be nonvoid. Using connected sum, stick homology spheres onto $S^2 \times R$ to form W^3 ; the map f is to shrink spines of the homology spheres to points and then project to R.

3. A special case of the main theorem.

THEOREM 3.1. Suppose that $\phi: S^2 \times \mathbb{R} \to \mathbb{R}$ is a proper, surjective map such that $\phi^{-1}(J) \approx S^2 \times \mathbb{R}$ for any open interval $J \subseteq \mathbb{R}$. Suppose further that $\psi: Z_\phi \to \mathbb{R}^4$ is an embedding of Z_ϕ onto a neighborhood of $\psi(\mathbb{R})$ in \mathbb{R}^4 . Then $\psi(\mathbb{R})$ is locally flat in \mathbb{R}^4 .

Throughout the remainder of this section we shall adhere to the following notation:

- (a) $\phi: S^2 \times \mathbb{R} \to \mathbb{R}$ and
- (b) $\psi: Z_{\phi} \to \mathbb{R}^4$

are as in the hypothesis of Theorem 3.1.

- (c) $S_0 = \psi(Z_\phi)$.
- (d) For $0 \le t < 1$, S_t denotes the portion of $\psi(Z_{\phi})$ between the levels t and 1, the range of ϕ being the 1-level of the mapping cylinder Z_{ϕ} .

We may assume that $\psi(S^2 \times R) = \text{Bd } S_0$ is locally flat in R^4 , since S_0 may be replaced by S_t (t > 0).

LEMMA 3.2. Given a finite subset $\{s_1, s_2, \ldots, s_n\}$ of \mathbb{R} with $s_1 < s_2 < \cdots < s_n$, there exists an embedding $g: B^3 \times [1, n]$ into S_0 such that $g^{-1}(Bd S_0) = S^2 \times [1, n]$ and $g(0, k) = \psi(s_k)$ for $k = 1, \ldots, n$.

Proof. We first show how to find a 3-cell B in S_0 . Let α : $S^2 \times (-1, 1) \to \phi^{-1}(-1, 1)$ be a homeomorphism. Let Σ_t be $\alpha(S^2 \times \{t\}) \times \{t\}$, copied in Z_{ϕ} $(0 \le t < 1)$. Clearly $B = \psi(\bigcup_{0 \le t < 1} \Sigma_t \cup \{1\})$ is a 3-cell in S_0 that is locally flat in S_0 except possibly at $\psi(1)$. A result of Kirby [10] then implies that B is locally flat. From the construction of B it is also clear that B meets Bd S_0 "nicely".

Now, for $k=1,\ldots,n$, let B_k be a 3-cell in $\psi(Z_{\phi|\phi^{-1}(s_{k-1},s_{k+1})})$ as constructed above with $B_i\cap B_j=\varnothing$ if $i\neq j$ and $B_k\cap \psi(R)=\psi(s_k)$. Let A_k be the annulus in Bd S_0 bounded by Bd B_k and Bd B_{k+1} $(k=1,\ldots,n-1)$. Then $B_k\cup A_k\cup B_{k+1}$ is a locally flat 3-sphere in S_0 that bounds a 4-cell C_k in S_0 by the generalized Schoenflies Theorem [2]. Let $g_k\colon B^3\times [k,k+1]\to C_k$ be a homeomorphism that takes $B^3\times \{k\}$ onto B_k and $B^3\times \{k+1\}$ onto B_{k+1} . Construct the g_k 's inductively so that $g_k|B^3\times \{k+1\}=g_{k+1}|B^3\times \{k+1\}$ $(k=1,\ldots,n-1)$. Defining $g\colon B^3\times [1,n]\to S_0$ by $g\mid B^3\times [k,k+1]=g_k$, we complete the proof of the lemma.

REMARK 1. It is clear that in the statement of Lemma 3.2 we could have replaced S_0 by S_t for any $t \in [0, 1)$.

REMARK 2. The proof of Theorem 3.1 could now be completed by appealing to the technique of [3] as explained in [4]. The reason this is so is that for t sufficiently close to 1 and for suitably chosen $s_1 < 0 < s_2 < \cdots < s_{n-1} < 1 < s_n$, we can get a small push of $\psi([0, 1])$ off of any 2-complex K by first placing $g(\{0\} \times [1, n])$ and K in general position. We have a complete, elementary proof, however, that uses a construction similar to one found in [6].

LEMMA 3.3. Suppose that $\{s'_1, \ldots, s'_m\}$ and $\{s''_1, \ldots, s''_n\}$ are subsets of R with $s'_1 < \cdots < s'_m$, $s''_1 < \cdots < s''_n$, and $s'_i \neq s''_j$ (for any i, j), that $t', t'' \in [0, 1)$, and that $g' \colon B^3 \times [1, m] \to S_{t'}$ and $g'' \colon B^3 \times [1, n] \to S_{t''}$ are the associated embeddings obtained from Lemma 3.2. Let

$$\{s_1,\ldots,s_{m+n}\}=\{s_1',\ldots,s_m'\}\cup\{s_1'',\ldots,s_n''\}$$

arranged so that $s_1 < \cdots < s_{m+n}$. Then there exist $t \in [0, 1)$ and an embedding $g: B^3 \times [1, m+n] \rightarrow S_t$ such that

$$g(B^{3} \times \{k\}) = g'(B^{3} \times \{i\}) \cap S_{t} \quad \text{if } s_{k} = s'_{t},$$

= $g''(B^{3} \times \{j\}) \cap S_{t} \quad \text{if } s_{k} = s''_{t}.$

Proof. Observe that the 3-cell B constructed at the beginning of the proof of Lemma 3.2 separates each S_t in the same manner in which it separates S_0 . Furthermore, given $g' \colon B^3 \times [1, m] \to S_{t'}$ and $g'' \colon B^3 \times [1, n] \to S_{t''}$, there exists $t \ge \max\{t', t''\}, t < 1$, so that $g'(B^3 \times \{i\}) \cap g''(B^3 \times \{j\}) \cap S_t = \emptyset$ for any i, j. Thus the proof of Lemma 3.2 can be carried out using the 3-cells $g'(B^3 \times \{i\}) \cap S_t (i = 1, ..., m)$ and $g''(B^3 \times \{j\}) \cap S_t (j = 1, ..., n)$ in the construction of g.

Proof of (3.1). We are going to construct a homeomorphism H of \mathbb{R}^4 that carries $\psi[0, 1]$ onto a locally flat arc. Since, in effect, $\psi[0, 1]$ is an arbitrary subinterval in $\psi(\mathbb{R})$, this will prove that $\psi(\mathbb{R})$ is locally flat.

Let $\varepsilon_1, \varepsilon_2, \ldots$ be a sequence of positive numbers such that $\sum_{i=1}^{\infty} \varepsilon_i < \infty$.

Inductively we can use (3.2) and (3.3) to find numbers $0 \le t_1' < t_2' < \cdots < 1$ and embeddings $g_k' : B^3 \times [-1, 2^k + 1] \to S_{t_k'}$ such that $g_k'(0, i) = \psi(i/2^k)$ and

$$g'_{k+1}(B^3 \times \{2i\}) = g'_k(B^3 \times \{i\}) \cap S_{t'_{k+1}}.$$

Let g_1, g_2, \ldots be a subsequence of g_1', g_2', \ldots (with corresponding subsequences t_1, t_2, \ldots of t_1', t_2', \ldots and t_1, t_2, \ldots of $t_2' + t_2' + t_2' + t_3 + t_4' + t_5' +$

diam
$$g_i(B^3 \times [j, j+1]) < \varepsilon_i \qquad (-1 \le j < n_i).$$

Set $J_i = g_i(\{0\} \times [0, n_i - 1])$, $B_{ij} = g_i(B^3 \times [j, j + 1])$, and $B_i = \bigcup_{j=-1}^{n_i - 1} B_{ij}$. Observe that whenever k > i and $0 \le j \le n_i - 2$, $J_i \cap B_{ij}$, $J_k \cap B_{ij}$, and $\psi([0, 1]) \cap B_{ij}$ are properly embedded arcs in B_{ij} sharing common endpoints. Let $h_i'': J_i \to \psi([0, 1])$ be a homeomorphism taking $J_i \cap B_{ij}$ onto $\psi([0, 1]) \cap B_{ij}$ that fixes the endpoints of $J_i \cap B_{ij}$, and let h_i' be a homeomorphism of \mathbb{R}^4 such that $h_i' \mid \mathbb{Bd} B_{ij}$ and $h_i' \mid \mathbb{R}^4 - B_i$ are the identity and $h_i' \mid J_i = (h_{i+1}'')^{-1}h_i''$. Thus h_i' is an ε_i -homeomorphism and $h_i'(J_i) = J_{i+1}$.

Observe also that if U is any neighborhood of J_i $(i \ge 2)$, then there exists an ε_i -homeomorphism θ_i of \mathbb{R}^4 such that $\theta_i | (\mathbb{R}^4 - B_{i-1}) \cup J_i = \text{identity and } \theta_i(U) \supset B_i$. For $0 < r \le 1$ let $B_i^3 = \{rx \mid x \in B^3\}$ and let $C_i = g_1(B_{1/i}^3 \times [-1/i, n_1 - 1 + 1/i])$.

Let $h_1 = h'_1$. Assuming $h_k: \mathbb{R}^4 \to \mathbb{R}^4$ is defined such that $h_k(J_1) = J_{k+1}$, let θ_{k+1} be an ε_{k+1} -homeomorphism of \mathbb{R}^4 such that $\theta_{k+1} \mid (\mathbb{R}^4 - B_k) \cup J_{k+1} = \text{identity}$ and $\theta_{k+1}h_k(C_{k+1}) \supset B_{k+1}$, and let $h_{k+1} = h'_{k+1}\theta_{k+1}h_k$. Then h_{k+1} moves no point of \mathbb{R}^4 farther than $2 \sum_{i=1}^{k+1} \varepsilon_i$. Thus the sequence h_1, h_2, \ldots converges to a map h of \mathbb{R}^4 onto itself. By construction $h|J_1 = \lim h_i|J_1 = h''_1:J_1 \to \psi([0,1])$ is a homeomorphism and $h|\mathbb{R}^4 - B_1 = \text{identity}$. Let p be a point of $B_1 - J_1$. There exists i such that $p \in B_1 - C_i$. Thus $h_{i+1}(p) \notin B_{i+1}$ and so $h(p) = h_{i+2}(p)$. This implies that $h|B_1 - J_1$ is a homeomorphism of $B_1 - J_1$ onto $B_1 - \psi([0,1])$, and hence h is a homeomorphism. The homeomorphism $H = h^{-1}$ takes $\psi([0,1])$ onto an arc (J_1) that is known to be locally flat. Hence $\psi([0,1])$ is locally flat.

4. **Proof of the main theorem.** In the following, K^0 denotes the set of vertices of the complex K.

THEOREM 4.1. Let K be a finite 1-complex topologically embedded in the interior of the PL 4-manifold M^4 . Suppose that $K-K^0$ has mapping cylinder neighborhoods in M^4 at each point. Then K is tame in M^4 .

Proof. For each $x \in K - K^0$, let V_x be an open arc in $K - K^0$ containing x such that there exist an open 3-manifold U_x , a proper map ϕ_x of U_x onto V_x , and an embedding ψ_x of Z_{ϕ_x} into M such that $\psi_x(v) = v$ for all $v \in V_x$. Applying (1.2), we see that $\phi_x^{-1}(t)$ has property $uv^1(Z)$ for each $t \in V_x$. Applying (2.1), we see that there is a locally finite subset F_x of V_x such that if J is an open interval in $V_x - F_x$ then $\phi_x^{-1}(J) \approx S^2 \times R$. By shrinking the interval V_x somewhat, we may assume that F_x is actually finite.

Now, let $\{V_{x_1}, V_{x_2}, \ldots\}$ be a locally finite subcollection of $\{V_x\}$ which covers $K-K^0$, and let $F=K^0 \cup \bigcup_{i=1}^{\infty} F_{x_i}$. F is a compact countable subset of K. The crucial property that F enjoys is the following: For each point $x \in K-F$, V_x , U_x , ϕ_x , ψ_x may be chosen so that $\phi_x^{-1}(J) \approx S^2 \times R$ for any open interval $J \subseteq V_x$. By the special case (3.1), $\psi_x(V_x)$ is locally flat in M^4 . Hence, K is locally tame in M^4 at each point of K-F. It follows from [5] and [8] that K is tame in M^4 .

COROLLARY 4.2. If S is a 1-sphere in S^4 which has mapping cylinder neighborhoods in S^4 at every point, then S is flat.

REFERENCES

- 1. S. Armentrout and T. M. Price, Decompositions into compact sets with UV properties, Trans. Amer. Math. Soc. 141 (1969), 433-442. MR 39 #6307.
- 2. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76. MR 22 #8470b.
- 3. J. L. Bryant, On embeddings of compacta in Euclidean space, Proc. Amer. Math. Soc. 23 (1969), 46-51. MR 39 #6286.
- 4. J. L. Bryant and D. W. Sumners, On embeddings of 1-dimensional compacta in a hyperplane in E^4 , Pacific J. Math. 33 (1970), 555-557.
- 5. J. C. Cantrell, *n-frames in euclidean k-space*, Proc. Amer. Math. Soc. 15 (1964), 574-578. MR 29 #1627.
- 6. A. V. Černavskii, Topological embeddings of manifolds, Dokl. Akad. Nauk SSSR 187 (1969), 1247-1250=Soviet Math. Dokl. 10 (1969), 1037-1041.
- 7. L. C. Glaser, "On double suspensions of arbitrary nonsimply connected homology *n*-spheres," *Topology of manifolds*, J. C. Cantrell and C. H. Edwards, Jr. (editors), Markham, Chicago, 1970.
- 8. H. Gluck, Embeddings in the trivial range, Ann. of Math. (2) 81 (1965), 195-210. MR 30 #3456.
- 9. L. S. Husch and T. M. Price, Finding a boundary for a 3-manifold, Ann. of Math. (2) 91 (1970), 223-235.
- 10. R. C. Kirby, On the set of non-locally flat points of a submanifold of codimension one, Ann. of Math. (2) 88 (1968), 281-290. MR 38 #5193.

- 11. H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jber. Deutsch. Math.-Verein 38 (1929), 248-260.
 - 12. R. C. Lacher, Cell-like mappings. I, Pacific J. Math. 30 (1969), 717-731. MR 40 #4941.
 - 13. —, Cell-like mappings. II, Pacific J. Math. 35 (1970), 649-660.
- 14. R. C. Lacher and A. H. Wright, "Mapping cylinders and 4-manifolds," *Topology of manifolds*, J. C. Cantrell and C. H. Edwards, Jr. (editors), Markham, Chicago, 1970.
- 15. D. R. McMillan, Jr., Acyclicity in three-manifolds, Bull. Amer. Math. Soc. 76 (1970), 942-964.
- 16. ——, UV properties and related topics, Lecture Notes, Florida State University, Tallahassee, Fla., 1970.
- 17. V. Nicholson, Mapping cylinder neighborhoods, Trans. Amer. Math. Soc. 143 (1969) 259-268. MR 40 #2038.
 - 18. A. H. Wright, Mappings from 3-manifolds onto 3-manifolds (to appear).

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306